Cereal bars are practical and quick everyday option, offering good calories supplementation and nutritional sources such as lipids, proteins, fiber, vitamins and minerals. The market for these products is growing and industries need to innovate in their formulations to meet consumers’ desires. Since salty flavors are still scarce on supermarkets, the objective of this work was to develop formulations of salted cereal bars with the addition of carotenoid rich vegetables. Using a formulation base consisting of oatmeal, peanuts, flaxseed, sesame, rice flakes, garlic powder, dehydrated onion, oregano, smoke powder, salt, provolone cheese, curd and water, six new formulations were elaborated by varying the proportion of this basic formulation with the addition of carotenoid rich vegetables (dried tomatoes, dehydrated carrots or fresh kale) with and without provolone cheese layer on surface. The dry and binders’ ingredients were mixed until dough was obtained which was bar molded and baked at 180°C for 20 minutes. Analyzes were performed to determine moisture, lipid, protein, ash, carbohydrate and total carotenoids content. The samples with cheese surface layer presented higher moisture content, possibly because the increase of the amount of cheese added. Moisture levels were high for all formulations, above 15%, indicating that it would be interesting to test the stability of the cereal bars during storage or the possibility of reducing the fraction of binder’s agents (wet) or increase the time and temperature of baking. There was no significant difference (p>0.05) in protein concentration when the cheese layer was added for the same flavor. The protein content ranged from 10.15 to 12.69%, representing satisfactory results. Dried tomato and carrot formulations were classified as protein source because presented a content above 6%, while kale formulations were characterized as foods with high protein content (above 12%). The samples with cheese layer had lower lipid content; probably this is due to the fact that by placing the cheese layer proportionally, the other ingredients were reduced, among them, those that most contribute to the lipid content (oilseeds and curd). The values for ash content ranged from 3.72 to 5.78% and the dried tomatoes formulations presented the highest contents (p ≤ 0.05). For carbohydrates, the values were between 33.93 and 47.03%. The dried tomato cereal bars samples showed the highest concentrations of total carotenoids (53.56 - 58.34 µg/g), then carrot and kale bars (42.56 - 45.59 and 21.68 - 21.92 µg/g, respectively). Thus, it was possible to develop salty cereal bars with the addition of vegetables rich in carotenoids, obtaining good nutritional and sensorial characteristics.