DEREPLICATION OF AN ALKALOIDAL FRACTION FROM *Palicourea hoffmanseggiana* (Roem. & Schult.) Borhidi (Rubiaceae) COLLECTED IN A RESTINGA BIOSYSTEM AT MARAPIN, STATE OF PARÁ

Leticia Hiromi Ohashi¹, Maria Fernanda Alves do Nascimento², Douglas Costa Gontijo², Gabriela Bontempo Samulski², Geraldo Célio Brandão³, Alaíde Braga de Oliveira²

¹ Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, PA, Brazil;
² Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil;
³ Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
lhohashi95@gmail.com

A screening for antiplasmodial activity of plants collected at the Crispin beach, in the municipality of Marapanin, state of Pará (S 0º 35’ 35.23” W 47º 39’ 28.92”), an area of a restinga ecosystem, disclosed that the leaves ethanol extract of *Palicourea hoffmanseggiana* (Roem. & Schult.) Borhidi (Rubiaceae) (sinon. *Psychotria hoffmanseggiana* (Schult.) Müll. Arg.), in the concentration of 100µg/mL, caused a parasitaemia reduction of 98-99% of *Plasmodium falcipartum* (W2), a chloroquine resistant clone of this malarial agent. *Palicourea* and *Psychotria* are known sources of potentially bioactive metabolites like alkaloids, flavonoids, coumarins, anthraquinones, simple phenol derivatives and terpenes (triterpenes, iridoids). *Palicourea* and *Psychotria* alkaloids are biosynthetically derived from tryptophan presenting a wide structural diversity and little is known on their antimalarial activity. The present study on *P. hoffmanseggiana* comprises the preparation of different stems and leaves extracts, alkaloids separation by acid-base procedures, antiplasmodial evaluation, isolation and/or identification of constituents by tandem UPLC-DAD-ESI-MS®. It will be reported the dereplication of a leaves n-butanol alkaloid fraction that showed two intense peaks with Rt 2.61 and 3.06 min in the UPLC-DAD chromatogram for which three peaks were observed in the spectogram by UPLC-ESI-MS. To the first one corresponded a peak ion at m/z 513 Da [M + H]^+ while two peaks were registered for the second one at m/z 517 Da [M + H]^+ and 719 Da [M + H]^+. The three analytes showed UV spectra that are characteristics of indole alkaloids (λ_{max} 221 nm). The molecular masses (MM) 512 and 516 Da might be assigned, respectively, to strictosidinic and lialosidic acids, which are described for these genera. No reference was found in the Scifinder® for the third analyte for alkaloids with the MM 718. Therefore, it represents possibly a new MIA and a structural proposal based on UPLC-DAD-ESI-MS® data will be presented.