Loquat (*Eriobotrya japonica* Lindl.) is a fruit with antimicrobial potential that comes mainly from ursolic acid. This acid is present in the natural composition of the loquat and is preserved in its hydroethanolic extract. The aim of this study was to quantify the ursolic acid present in extracts from different parts of loquat fruit. Loquats were collected in January 2017, and separated into ‘pulp’, ‘pulp and seed’ and ‘seed’. These parts were lyophilized separately for 24 hours and ground. The loquat was separated into ‘pulp’, ‘pulp and seed’ and ‘seed’, these parts were lyophilized for 24 hours and ground in a food processor to increase the contact area for extraction. The crushed samples were diluted by ethanol-water solution (1:1 v/v). For every twenty grams of “pulp”, “pulp and seed” and “seed” was used 100 mL of the extraction solution. The mixture was stirred, protected from light and stored at room temperature (23 °C ± 3 °C) for 48 hours. The extracts were filtered on filter paper and the solvent was rotary evaporated until all ethanol was collected in the distillation flask and the extract still remained liquid. Thus, the bioactive compounds of the extract were identified by UPLC analysis. For the identification of the ursolic acid peak, a photodiode array UV-vis detector was used in a range of 200 to 400 nanometers, a C18 column with a working temperature of 23 °C ± 3 and a mobile phase divided into two solutions. Solution A composed of acetonitrile / water (10:90, v/v) and solution B by acetic acid / acetonitrile / water (5:80:15, v/v). In analysis, the solvent gradient was programmed from 0 to 50 % B in A for fifty minutes at a flow rate of 1 mL.min⁻¹. The ursolic acid standard was injected under the predetermined conditions. The respective absorbance values of the concentrations, which ranged from 10 - 150 ppm, were calculated by the equation (Y = 8209.4 x) and the determination coefficient found was $R^2 = 0.9595$. The extracts were injected under the same conditions as the standard. The results from UPLC analysis demonstrated that the ursolic acid concentration presented in the “seed” extract of loquat (0.65 mg.100mL⁻¹) was higher than the extracts from the “pulp and seed” (0.23 mg.100mL⁻¹) and “pulp” (0.08 mg.100mL⁻¹). Know the concentrations of antimicrobial compound in the loquat parts has is a first step to isolated ursolic acid of the fruit and use it with a organic preservative in foods.