The emergence of multiresistant pathogens and their impact on public health has become a global problem. In this context, the discovery of new plant extracts with antimicrobial effect has been encouraged in several countries. Some bioactive compounds were identified in species of *Tecoma* genus as alkaloids, phenols and terpenes, and exhibited antibacterial activity. In addition to the antimicrobial potential, compounds isolated of plant extracts used in combination with antibiotics have promoted a reduction in minimum inhibitory concentration (MIC) in some resistant strains. Thus, the aim of this work was to verify the antibacterial effect and synergistic potential of *Tecoma* spp. (Bignoneaceae) with antibiotic. The ethanol extract was obtained from the dry flowers of *Tecoma* spp. in turbo-extractor (using alcohol 70.0 °GL as solvent; 1:9 w/v plant/alcohol). The solvent was evaporated and dried extract obtained was diluted in dimethylsulfoxide (DMSO) and water (1: 9). Antimicrobial effect of extract was evaluated against *Proteus mirabilis* ATCC15290, *Escherichia coli* EHEC ATCC43895, *Aeromonas hydrophila* ATCC11036 and *Enterococcus faecalis* ATCC14506 strains and determined the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). The interaction of the extract with antibiotic amoxicillin was analyzed using the 96-well plate checkerboard test and classified as an interaction as synergic, additive or antagonism. The extract of *Tecoma* spp. exhibited bactericidal activity on *P. mirabilis* (1 mg/mL), *E. coli* EHEC (0.5 mg/mL), *E. faecalis* (1 mg/mL), *A. hydrophila* (2 mg/mL) and bacteriostatic action at concentration of 0.5 mg/mL, 0.25 mg/mL, 0.5 mg/mL e 1 mg/mL, respectively. The extract in combination with amoxicillin presented synergism against *E.coli* EHEC and *P. mirabilis* and additive interaction against *A. hydophila* and *E. faecalis*. In this study, *Tecoma* spp. extract exhibited antibacterial potential alone and in combination with amoxicillin against four bacterial strains of clinical interest, demonstrating out significant results in a reality of bacterial resistance increase to the antimicrobials traditionally used.

Keywords: *Tecoma*, antibacterial, flowers.

Acknowledgements: The authors thank UFSJ, CAPES (Finance Code 001), CNPq and FAPEMIG.